Family Medicine physician serving Montrose, La Cañada, La Crescenta, Glendale and neighboring areas
Take charge of your health!
Invest in yourself. Regain your health, wellness and vitality starting now.
Call us today for an appointment.
(818) 957-6909
Contact Us
Services

Services

Stem Cell Therapy Applications in Medicine

Today, physicians are using stem cells for a number of conditions – including, but not limited to, orthopedic issues, athletic injuries, lung diseases (COPD, pulmonary fibrosis, etc.), neurological conditions (Parkinson’s, Alzheimers, Dementia, Brain injury, etc.), among many others.



What is Oasis Regenerative Medicine?

Regenerative medicine is about healing non-functioning cells via the process of replacing and renewing human cells and tissues for the purpose of restoring homeostasis and optimal function in the body. Often, when used in a medically appropriate and individualized manner, this may include potentially using stem cells.



What sets Oasis Regenerative Therapies apart from the competition?

Our Proprietary Regenerative Therapy Protocols prime then support your body so that the stem cells you receive produce maximal therapeutic effects in your body tissues.

  1. 1. Only when medically appropriate
  2. 2. Individualized therapeutic protocol
  3. 3. Prime your system to receive the therapy
  4. 4. Give you the highest quantity & quality stem cell therapy
  5. 5. Support & encourage your new stem cells, especially after you receive them
  6. 6. Wise investment in your health – considering the additional support that is given to maximize the stem cells healing potential, our pricing is beyond reasonable (even compared to treatments in Mexico). This is not a get-rich scheme for us. This is about giving you the best appropriate therapy possible.


What are Stem Cells?

Stem cells are in our bodies and have the capacity to change into any health cell in our body which means they can turn into bone, cartilage, heart, muscle, skin, etc. Additionally, injured cells/tissues of the body send out physiological molecules that act like beacons that signal the stem cells (and their growth factors, cytokines, and chemokines) to come to the injured/diseases sites and start endogenous cellular repair.

Stem cells are normally in our body in all organs. However, with the passage of time, stem cells age in our body just like all other cells do. That is why we use umbilical cord tissue which are young and healthy.



Is Stem Cell Use Ethical?

We use stem cells derived from umbilical and placenta cord tissue, which is the safest and least-invasive method of extraction available. These stem cells are sourced from umbilical cord and placenta tissue from babies that are born healthy and screened for infectious diseases. These umbilical cords and placentas would otherwise typically just be discarded in the trash. Most everyone considers this use of umbilical/placenta derived stem cells to be ethical.



Other Stem Cell Sources (that we do not use)

Embryonic tissue: Most embryonic stem cells are derived from embryos donated from fertility clinics that perform in vitro fertilization (IVF). Some are ethically opposed to this type of stem cell therapy.

Bone marrow: Adult stem cells can be extracted from bone marrow by aspiration, typically from the superior iliac crest (hip) or the sternum (chest). This process may be painful and extracts adult stem cells that are already as old and aged as you currently are.

Adipose tissues: Adipose-derived stem cells come from a patient’s fat tissue, which is surgically extracted via liposuction under general anesthesia and also extracts adult stem cells that are already as old and aged as you currently are.



Are There Side Effects?

When used in a medically appropriate and individualized manner there are no known ill side effects, no allergic reactions, and no body rejection

Today, doctors in a wide variety of institutional settings include stem cell therapies to treat many conditions.

Our therapies are simple, safe, do not require anesthesia and take no more time than a traditional office visit. Stem cells are currently being researched and used in a number of medical applications, including (but not limited to):

  • ORTHOPEDIC CONDITIONS
  • JOINT PAIN
  • OSTEOARTHRITIS
  • MUSCLE PAIN
  • MENISCUS, ACL or MCL TEARS
  • ATHLETIC INJURIES
  • LUNG DISEASES
  • COPD
  • IDIOPATHIC PULMONARY FIBROSIS
  • INTERSTITIAL LUNG DISEASE
  • ASTHMA
  • NEUROLOGICAL DISEASES
  • DEMENTIA
  • ALZHEIMER’S
  • CHRONIC TRAUMATIC BRAIN INJURY
  • STROKE
  • AUTISM
  • DIABETES II
  • HEART DISEASE
  • AUTOIMMUNE DISEASES
  • RHEUMATOID ARTHRITIS
  • CROHN’S DISEASE
  • LUPUS
  • SCLERODERMA
  • MULTIPLE SCLEROSIS
  • DIABETES II
  • HEART DISEASE
  • LYME DISEASE


FAQ's



  • How are the Cells Processed and Are They Safe?

    The umbilical cord is processed in the hospital according to the rules and regulation of the American Association of Tissue Banks (AATB). Approximately 4 weeks prior to a scheduled caesarean section, the mothers OB/GYN asks her if she would like to keep and store her unborn child’s umbilical cord for future use. If the mother declines then she is asked if she would like to donate the umbilical cord. If she agrees, she undergoes a review of her medical history, social history, and a blood test. If she is deemed an acceptable donor according to prevailing rules of the AATB, then at the time of her caesarean section an experienced technician will clamp the umbilical cord, take it to a clean room, and remove the contents of the umbilical cord and place it into a blood bag. The bag of umbilical cord blood is then delivered to the lab for processing. Once at the lab, a sample of the umbilical cord blood is sent to a 3rd party independent FDA registered lab for testing according to United States Pharmacopeia rule 71 (U.S.P. 71), which is a test for known communicable diseases. While that test is taking place the stem cells are then processed and removed from the red blood cell products. A sample of the finished stem cell product is then sent to a different 3rd party independent FDA registered lab for sterility testing. Only after both lab reports come back as “clean” and have passed the regulatory requirements, are the processed umbilical cord stem cells available for distribution.
  • Do You Ever Use an Aborted Fetus?

    No, we only use the umbilical cord from a live healthy birth baby.
  • Is Stem Cell Use Ethical?

    We use stem cells derived from umbilical and placenta cord tissue, which is the safest and least-invasive method of extraction available. These stem cells are sourced from umbilical cord and placenta tissue from babies that are born healthy and screened for infectious diseases. These umbilical cords and placentas would otherwise typically just be discarded in the trash. Most everyone considers this use of umbilical/placenta derived stem cells to be ethical.
  • Other Stem Cell Sources (that we do not use)

    Embryonic tissue: Most embryonic stem cells are derived from embryos donated from fertility clinics that perform in vitro fertilization (IVF). Some are ethically opposed to this type of stem cell therapy. Bone marrow: Adult stem cells can be extracted from bone marrow by aspiration, typically from the superior iliac crest (hip) or the sternum (chest). This process may be painful and extracts adult stem cells that are already as old and aged as you currently are. Adipose tissues: Adipose-derived stem cells come from a patient’s fat tissue, which is surgically extracted via liposuction under general anesthesia and also extracts adult stem cells that are already as old and aged as you currently are.
  • Is HLA Matching Necessary?

    No, HLA matching is not necessary for the product because HLA-DR, the component responsible for a non-HLA matched negative reaction, is below measurable amounts. Even in the 1990’s when HLA-DR extraction techniques were far less efficient than they are today, negative HLA-DR reactions were not commonly seen.
  • Are Umbilical Cord Stem Cells From Another Person (Allogeneic) Safe to Put Into My Body?

    Yes, allogeneic (taken from another person of the same species) cells are safe to put into your body. When the umbilical cord is processed, all the red blood cell components that could cause a negative reaction are removed. Also, the umbilical cord cells are naïve/immature and do NOT react the way a mature adult cell would act. “Mesenchymal stem cells produce huge quantities of bio-molecules, some of which are immunosuppressive; MSC’s put up a curtain of molecules around themselves that allows donor (allogenic) MSC’s to be transplanted into a recipient, free from an immune response. (Immune privileged/Immune Masked)” Arnold Caplan, PhD. Case Western Reserve University. Experimental and Molecular Medicine (2013) 45 Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine
  • Will Umbilical Cord Stem Cells Cause a Graft vs. Host Reaction?

    No. Arnold Caplan, PhD. has spoken extensively on the science as to why umbilical cord stem cells do not cause a GVH response. It should also be noted that Canada recently approved Umbilical Cord Stem Cells for the TREATMENT of GVH.
  • Can I Split the Contents of a Stem Cell Vial Into Different Regions of the Body ?

    Yes, you may choose to split the contents of a vial into different regions of your body if it is medically appropriate. For example, if you order the 120 million concentration vial, you may split the vial and inject the equally divided contents into 2 or 3 joints for the desired minimum of 7 to 10 million cells per medium to large size joint.
  • Can I Split the Contents of the Vial on DIFFERENT Patients?

    No, you may NOT split the contents of the vial and use on 2 different patients. For regulatory and tracking purposes, the vials are SINGLE USE and can only be used on a SINGLE PATIENT.
  • Is it Normal to Have an Inflammatory Response After the Injection?

    It is not uncommon to have an inflammatory response after a stem cell injection. The reason for the inflammation is the rapid action of the stem cells in immunomodulation. An inflammatory response is NOT a negative response, rather it is a positive indication that the cells are working. To counteract the inflammatory response, we may inject into the joint or tissue, 4-10mg of Dexamethasone Sodium Phosphate (not an acetate derivative because of its poor solubility in synovial fluid) to blunt the inflammatory response. The steroid will NOT damage the cells. 4mg for small joints and up to 10mg for large/medium joints. We may also use a homeopathic to decrease the inflammation.
  • Is an Inflammatory Response Necessary for a Good Outcome?

    No, an inflammatory response is not necessary. Some people have a response and there is no exact explanation as to why.
  • What Activity Level Can I Have After the Injection?

    It is advised that you NOT increase your activity level above your pre-injection activity level. Give the cells 3 months to modulate inflammation and the immune system and allow the growth factors to begin to stimulate your own cells for regeneration.
  • Should I have Physical Therapy After the Injection?

    Whether to have P.T. after a stem cell injection is your choice. If you do participate in P.T., is it recommended that you mainly do Open Kinetic Chain exercises that do NOT put added pressure on the joint.
  • Is DNA Testing Necessary?

    No, DNA testing is not necessary because the stem cells and mononucleated cells do NOT penetrate the nucleus of the recipients’ cells and thus do not pass on DNA. The ability of a stem cell to pass along DNA matter is a property of a stem cell when it is in the embryonic stage and is no longer possible after the 10th week of gestation. Umbilical cord stem cells are harvested between weeks 36 and 40.
  • Do Stem Cells Duplicate Themselves in the Body?

    No, stem cells do NOT duplicate themselves in the body. Stem cells DO have the ability to duplicate themselves in vitro, in culture in the lab, but they do NOT duplicate themselves in the body. This is a long-held myth that is now disproven.
  • Do Allogeneic Stem Cells Differentiate/Change Into New Tissue in The Body?

    Research has shown that the vast majority of the function of stem cells is for Medicinal Signaling and NOT differentiation. Stem cells produce long-term effects by responding to signals from injured tissue. The stem cells work by inhibiting the inflammatory components that cause pain and damage to tissue and the mononucleated cells secrete growth factors, proteins, and cytokines that stimulate our own native tissue to repair and regenerate itself.
  • Do Stem Cells Cause Cancer or Cause Cancer to Grow?

    While there are no large direct studies to show that stem cells do not cause cancer, there are studies that whereby stem cells are used to treat cancer and the conclusion is that since the cells effectively suppress cancer cells, it is believed that they do not proliferate cancer cells nor cause the formation of cancer cells.
  • Are Umbilical Cord Cells the Same as Amniotic Fluid?

    No, umbilical cells are LIVE NUCLEATED CELLS that contain stem cells that will continue to produce anti-inflammatory and immunomodulatory components that optimize the local cellular environment. They also contain mononucleated cells that produce growth factors, proteins, and cytokines that stimulate our own tissue to regenerate itself. Because the cells are LIVE, they can continue to exert the cellular function for weeks and even months in the body. Conversely, amniotic fluid/tissue must be processed in such a way that KILLS the live nucleated cells leaving a product that contains growth factors, proteins, and cytokines that will have an effect for, at most, several hours to a few days.
  • Are Live Nucleated Cells Important?

    Yes, the presence of live nucleated cells means that the anti-inflammatory and immunomodulatory components from the MSC’s will continue to be produced for many weeks and possibly months, optimizing the injured environment. At the same time, the growth factors, proteins, and cytokines produced by the mononucleated cells will stimulate our own tissue to repair and regenerate itself.
  • Are There Other Stem Cell Products That Contain Live Nucleated Cells?

    Yes, bone marrow aspirate and adipose derived stem cells also contain live nucleated cells, though the age and health of the patient from which the cells are taken directly affect the activity level and function of the cells.
  • Are All Live Nucleated Cells Created Equal?

    No, live nucleated cells from umbilical cord blood are young, vibrant cells that have not been effected by age or disease whereas bone marrow aspirate and adipose derived stem cells are significantly older and potentially damaged by disease.
  • Does Age Matter?

    Yes, age definitely matters. In Vitro research by the International Journal of Molecular Sciences has shown that while young, vibrant umbilical cord stem cells can duplicate themselves every 28 hours for up to 65 generations or more, 50+ year old bone marrow aspirate and adipose derived stem cells duplicate at a much slower rate of 3 to 5 days for an average of only 11 to 13 generations. Also of note is that older cells undergo senescence (aging) at a much faster rate than young, vibrant umbilical cord cells and older senescent cells produce less quantities and less effective growth factors, proteins, and cytokines. Int. J. Mol. Sci. 2013, 14, 17986-18001; doi:10.3390/ijms140917986. International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms
  • How Do Umbilical Cord Stem Cells Actually Work?

    When umbilical cord cells are placed into an environment of injured tissue, the stem cells go to work inhibiting the damaging inflammatory components and modulating the immune system. At the same time, the mononucleated cells produce growth factors that nourish damaged cells back to health and stimulate our own cells to regenerate themselves. Studies have shown that even if you have an abundant amount of growth factors, they are unable to stimulate regeneration in the presence of high concentrations of inflammatory components. Specifically TNF-a (tumor necrosis factor-alpha) so the components work together first by inhibiting inflammation and secondly by stimulation of our own tissue with the growth factors, proteins, and cytokines.
  • Are There Specific Numbers of Cells Necessary to Treat Different Problems?

    Yes, Worldwide research and experience since the 1990’s has given us some effective parameters. Large to Medium Joints: (Shoulder, hip, knee, ankle) 10 million cell preparation miminum. Small Joints: (Elbow, 1st MCP/MTP, etc.) 2.5 to 5 million cells/joint (It should be noted that when injecting smaller joints, it is very important to NOT damage the cartilage upon entry into the joint. Many clinicians will place the cells peri-articular, around the small joint, to avoid cartilage damage inside the joint. The cells will migrate into the joint) Soft Tissue: (epicondyles, tendonitis/tendinosis, partial tendon/ligament tears etc.) 5 million cells minimum. (When injecting for a damaged ligament or tendon, it is most effective to inject around the site and not actually into the damaged tendon or ligament to avoid further needling damage and inflammatory response) Intra-Disc: 15 million cells/disc Clinical trials have shown 14 million cells to be effective, so typically, when doing a single level disc injection, you will also inject the corresponding Facet Joints along with 1 level above and 1 level below. Example: Use ½ of the 30 million cell vial (15 million cells) to inject into the desired disc. (you can add PRP for some volume and ½ to 1cc of hyaluronic acid for viscosity) Using the other ½ of the vial, add enough PRP or saline to inject 1cc of stem cell/PRP solution into each of the 6 corresponding facet joints. IF you are injecting 2 discs, then you will split the 30 million cell preparation evenly between each disc and if you desire to inject the corresponding facet joints along with 1 level above and below, (8 facets) you would add 7 cc’s of PRP or saline to a 1 cc vial of the 10 million cell concentration and inject 1cc into each facet. It should be noted that if the facet joint is collapsed, peri-articular injection is quite effective for the desired peripheral anti-inflammatory effect.
  • Can the Patient Take NSAIDS?

    Ideally, it is best if the patient can refrain from taking NSAIDS (anti-inflammatories such as aspirin, Advil, Aleve, ibuprofen, naproxen, Excedrin, Celebrex, or Mobic for 3 days before the injection to up to 4 weeks after the injection. Part of the function of the cells is a prostaglandin response and the NSAIDS will inhibit that. Recognize that NSAIDS will NOT destroy the cells but potentially lessen the effects. It is understood that not taking NSAIDS is to optimize the process.
  • Can I Take Stem Cells with a Biologic?

    Since Biologics typically inhibit the immune system and stem cells activate and modulate the immune system, the use of Biologics could diminish the overall effect of the stem cells in the body.
  • Are Umbilical Cord Stem Cells FDA Approved?

    No. Umbilical cord stem cells are NOT FDA approved and are considered experimental. FDA approval is not required if the stem cells are labeled and advertised by the manufacturer for treatments that will not have a systemic effect.
  • Are Some Growth Factors More Concentrated in PRP Than Umbilical Cord Cells?

    Initially yes. VEGF, FGF-2, and SCF are initially more concentrated in PRP but since there are no live cells in PRP the Growth Factors will only function for the half-life of that Growth Factor which is approximately 12 to 72 hours vs. Live Nucleated Cells in Umbilical Cord Cells which will continue to produce those very same Growth Factors for weeks and possibly even months.



Scientific References



There are greater than 200,000 peer reviewed scientific publications on PubMed. Thousands discuss positive outcomes following the use of stem cells. From stem cell therapies for heart disease to osteoarthritis to diabetes to name a few. Below is a brief discussion of some of the positive outcomes with the use of stem cells.

We do not use stem cells for all of the conditions mentioned in the following scientific references but provided is a short list of references that show the potential of stem cell therapies when used appropriately.

Additionally, here are two interesting website resources:

  1. Canadian Stem Cell Foundation: http://stemcellfoundation.ca/en/toward-treatments/"
  2. To look up in search box type “stem cell + (name of disease researching): https://www.clinicaltrials.gov


  • Scientific References - Orthopedic

    1. Lyftogt J.  Subcutaneous prolotherapy for Achilles tendinopathy.  Australia’s Musculoskeletal Medicine Journal. 2007; 12:107-109.

    2. Lyftogt J.  Prolotherapy for recalcitrant lumbago.  Australia’s Musculoskeletal Medicine Journal. 2008; 13:18-20.

    3. Lyftogt J.  Subcutaneous prolotherapy treatment of refractory knee, shoulder and lateral elbow pain. Australia’s Musculoskeletal Medicine Journal. 2007;12:110-112.

    4. Mazor M, Lespessailles E, Coursier R, et al. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med. 2014 Oct 29. doi: 10.1111/jcmm.12378.

    5. Diekman BO, Guilak F. Stem cell-based therapies for osteoarthritis: challenges and opportunities. Curr Opin Rheumatol. 2013 Jan;25(1):119-26. doi: 10.1097/BOR.0b013e32835aa28d.

    6. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011 May;14(2):211-5. doi: 10.1111/j.1756-185X.2011.01599.x. Epub 2011

    7. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, Jacobs CR. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. 2009 Sep;15(3):431-5.

    8. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, Lüginbuhl R. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl. 2008 Sep;23(2):169-88. Epub 2008 Jul 16.

    9. Ellingson AM, Shaw MN, Giambini H, An KN. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2015 Sep 24:1-10. [Epub ahead of print]

    10. Iorio JA, Jakoi AM, Singla A. Biomechanics of Degenerative Spinal Asian Spine J. 2016 Apr;10(2):377-84. doi: 10.4184/asj.2016.10.2.377. Epub 2016 Apr 15. Review.

    11. Butt AM, Gill C, Demerdash A, Watanabe K, Loukas M, Rozzelle CJ, Tubbs RS. A comprehensive review of the sub-axial ligaments of the vertebral column: part I anatomy and function. Childs Nerv Syst. 2015 May 1. [Epub ahead of print]

    12. Von Forell GA, Stephens TK, Samartzis D, Bowden AE. Low back pain: A biomechanical rationale based on “patterns” of disc degeneration. Spine (Phila Pa 1976). 2015 May 20. [Epub ahead of print]

    13. Li Z, Peroglio M, Alini M, Grad S. Potential and Limitations of Intervertebral Disc Endogenous Repair. Curr Stem Cell Res Ther. 2015 Mar 4.

    14. Wang Z, Perez-Terzic CM, Smith J, et al. Efficacy of intervertebral disc regeneration with stem cells – A systematic review and meta-analysis of animal controlled trials. Gene. 2015 Jun 10;564(1):1-8. doi: 10.1016/j.gene.2015.03.022. Epub 2015 Mar 19.

    15. Tibiletti M1, Kregar Velikonja N, Urban JP, Fairbank JC. Disc cell therapies: critical issues. Eur Spine J. 2014 Jun;23 Suppl 3:S375-84. doi: 10.1007/s00586-014-3177-2. Epub 2014 Feb 8.

    16. Krock E, Rosenzweig DH, Haglund L. The Inflammatory Milieu of the Degenerate Disc: is Mesenchymal Stem Cell-Based Therapy for Intervertebral Disc Repair a Feasible Approach? Curr Stem Cell Res Ther. 2015 Feb 11. [Epub ahead of print]

    17. Handley C, Goldschlager T, Oehme D, Ghosh P, Jenkin G. Mesenchymal stem cell tracking in the intervertebral disc. World J Stem Cells. 2015 Jan 26;7(1):65-74. doi: 10.4252/wjsc.v7.i1.65.

    18. Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2014 Sep 3. doi: 10.1002/stem.1845. [Epub ahead of print]

    19. Yim RL, Lee JT, Bow CH, Meij B, Leung V, Cheung KM, Vavken P, Samartzis D. A systematic review of the safety and efficacy of mesenchymal stem cells for disc degeneration: insights and future directions for regenerative therapeutics. Stem Cells Dev. 2014 Nov 1;23(21):2553-67. doi: 10.1089/scd.2014.0203. Epub 2014 Sep 11.

    20. Hauser RA The Deterioration of Articular Cartilage in Osteoarthritis by Corticosteroid Injections Journal of Prolotherapy. 2009;1(2):107-123.

    21. Wyles CC, Houdek MT, Wyles SP, et al. Differential cytotoxicity of corticosteroids on human mesenchymal stem cells. Clin Orthop Relat Res. 2015 Mar;473(3):1155-64. doi: 10.1007/s11999-014-3925-y. Epub 2014 Sep 4.

    22. Seshadri V, Coyle CH, Chu CR. Lidocaine potentiates the chondrotoxicity of methylprednisolone. J Arthr and Related Surg. 2009 Apr; 25(4): 337-347.

    23. Hirsch G, Kitas G, Klocke R. Intra-articular corticosteroid injection in osteoarthritis of the knee and hip: factors predicting pain relief–a systematic review. Semin Arthritis Rheum. 2013 Apr;42(5):451-73. doi: 10.1016/j.semarthrit.2012.08.005. Epub 2013 Jan 29.

    24. Hepper CT, Halvorson JJ, Duncan ST, Gregory AJ, Dunn WR, Spindler KP. The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: a systematic review of level I studies. J Am Acad Orthop Surg. 2009 Oct;17(10):638-46.

    25. Sofat N. Kuttapitiya A. Future directions for the management of pain in osteoarthritis. Int J Rheumatol. Apr 2014; 9(2): 197–276.

    26. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ 2004; 328:869.

    27. Sweetnam R. Corticosteroid arthropathy and tendon rupture. Journal of Bone and Joint Surgery. 1969: 397-398.

    28. Ravi B, Escott BG, Wasserstein D, Croxford R, Hollands S, Paterson JM, Kreder HJ, Hawker GA. Intraarticular hip injection and early revision surgery following total hip arthroplasty: a retrospective cohort study. Arthritis Rheumatol. 2015 Jan;67(1):162-8. doi: 10.1002/art.38886

    29. Siengdee P, Radeerom T, Kuanoon S, Euppayo T, Pradit W, Chomdej S, Ongchai S, Nganvongpanit K. Effects of corticosteroids and their combinations with hyaluronanon on the biochemical properties of porcine cartilage explants. BMC Vet Res. 2015 Dec 4;11(1):298. doi: 10.1186/s12917-015-0611-6.

    30. Massy-Westropp N, Simmonds S, Caragianis S, Potter A. Autologous blood injection and wrist immobilisation for chronic lateral epicondylitis. Adv Orthop. 2012;2012:387829. doi: 10.1155/2012/387829. Epub 2012 Dec 4.

    31. Khaliq A, Khan I, Inam M, Saeed M, Khan H, Iqbal MJ. Effectiveness of platelets rich plasma versus corticosteroids in lateral epicondylitis. J Pak Med Assoc. 2015 Nov;65(11 Suppl 3):S100-4.

    32. Yadav R, Kothari SY, Borah D.  Comparison of Local Injection of Platelet Rich Plasma and Corticosteroids in the Treatment of Lateral Epicondylitis of Humerus. J Clin Diagn Res. 2015 Jul;9(7):RC05-7. doi: 10.7860/JCDR/2015/14087.6213. Epub 2015 Jul 1.

    33. Arirachakaran A, Sukthuayat A, Sisayanarane T, Laoratanavoraphong S, Kanchanatawan W, Kongtharvonskul J. Platelet-rich plasma versus autologous blood versus steroid injection in lateral epicondylitis: systematic review and network meta-analysis. J Orthop Traumatol. 2015 Sep 11. [Epub ahead of print]

    34. von Wehren L, Blanke F, Todorov A, Heisterbach P, Sailer J, Majewski M. The effect of subacromial injections of autologous conditioned plasma versus cortisonefor the treatment of symptomatic partial rotator cuff tears. Knee Surg Sports Traumatol Arthrosc. 2015 May 28. [Epub ahead of print

    35. Gosens T, Den Oudsten BL, Fievez E, van ‘t Spijker P, Fievez A. Pain and activity levels before and after platelet-rich plasma injection treatment of patellar tendinopathy: a prospective cohort study and the influence of previous treatments. Int Orthop. 2012 Sep;36(9):1941-6. doi: 10.1007/s00264-012-1540-7. Epub 2012 Apr 27

    36. Cornwell KG, Landsman A, James KS. Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg. 2009;26(4):507–523.

    37. Jo CH1, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014 May;32(5):1254-66. doi: 10.1002/stem.1634.

    38. Saw KY1, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013 Apr;29(4):684-94. doi: 10.1016/j.arthro.2012.12.008. Epub 2013 Feb 4.

    39. Centeno CJ1, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008 May-Jun;11(3):343-53.

    40. Centeno CJ1, Kisiday J, Freeman M, Schultz JR. Partial regeneration of the human hip via autologous bone marrow nucleated cell transfer: A case study. Pain Physician. 2006 Jul;9(3):253-6.

    41. Gerber HP, et al. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med.5(6):623-8.

  • Scientific References – Lungs – Idiopathic Pulmonary Fibrosis

    Barczyk, Marek, Matthias Schmidt, and Sabrina Mattoli. 2015. Stem Cell-Based Therapy in Idiopathic Pulmonary Fibrosis. Stem cell reviews, no. 4. doi:10.1007/s12015-015-9587-7. http://www.ncbi.nlm.nih.gov/pubmed/25896401.

    Chambers, Daniel C, Debra Enever, Nina Ilic, Lisa Sparks, Kylie Whitelaw, John Ayres, Stephanie T Yerkovich, Dalia Khalil, Kerry M Atkinson, and Peter M A Hopkins. 2014. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology (Carlton, Vic.), no. 7 (July 9). doi:10.1111/resp.12343. http://www.ncbi.nlm.nih.gov/pubmed/25039426.

    Ghadiri, Maliheh, Paul M Young, and Daniela Traini. 2015. Cell-based therapies for the treatment of idiopathic pulmonary fibrosis (IPF) disease. Expert opinion on biological therapy, no. 3 (December 15). doi:10.1517/14712598.2016.1124085. http://www.ncbi.nlm.nih.gov/pubmed/26593230.

    Liu, Ming, Dunqiang Ren, Dong Wu, Jian Zheng, and Wenwei Tu. 2015. Stem Cell and Idiopathic Pulmonary Fibrosis: Mechanisms and Treatment. Current stem cell research & therapy, no. 6. http://www.ncbi.nlm.nih.gov/pubmed/25986617.

    Pongrakhananon, Varisa, Sudjit Luanpitpong, Todd A Stueckle, Liying Wang, Ubonthip Nimmannit, and Yon Rojanasakul. 2014. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein. Toxicological sciences : an official journal of the Society of Toxicology, no. 2 (November 19). doi:10.1093/toxsci/kfu251. http://www.ncbi.nlm.nih.gov/pubmed/25412619.

  • Scientific References – Lungs – Idiopathic Pulmonary Fibrosis

    Antonucci, Ivana, Andrea Pantalone, Stefano Tete, Vincenzo Salini, Cesar V Borlongan, David Hess, and Liborio Stuppia. 2012. Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Current pharmaceutical design, no. 13. http://www.ncbi.nlm.nih.gov/pubmed/22352751.

    Jin, Zhixian, Xinghua Pan, Kaihua Zhou, Hong Bi, Liyan Wang, Lu Yu, and Qing Wang. 2015. Biological effects and mechanisms of action of mesenchymal stem cell therapy in chronic obstructive pulmonary disease. The Journal of international medical research, no. 3 (April 1). doi:10.1177/0300060514568733. http://www.ncbi.nlm.nih.gov/pubmed/25834280.

    Lim, Sam, David Chi-Leung Lam, Abdul Razak Muttalif, Faisal Yunus, Somkiat Wongtim, Le Thi Tuyet Lan, Vikram Shetty, et al. 2015. Impact of chronic obstructive pulmonary disease (COPD) in the Asia-Pacific region: the EPIC Asia population-based survey. Asia Pacific family medicine, no. 1 (April 23). doi:10.1186/s12930-015-0020-9. http://www.ncbi.nlm.nih.gov/pubmed/25937817.

    Mora, Ana L, and Mauricio Rojas. 2013. Adult stem cells for chronic lung diseases. Respirology (Carlton, Vic.), no. 7. doi:10.1111/resp.12112. http://www.ncbi.nlm.nih.gov/pubmed/23648014.

  • Scientific References – Lungs – COPD / Emphysema

    Mora, Ana L, and Mauricio Rojas. 2013. Adult stem cells for chronic lung diseases. Respirology (Carlton, Vic.), no. 7. doi:10.1111/resp.12112. http://www.ncbi.nlm.nih.gov/pubmed/23648014

    Jin, Zhixian, Xinghua Pan, Kaihua Zhou, Hong Bi, Liyan Wang, Lu Yu, and Qing Wang. 2015. Biological effects and mechanisms of action of mesenchymal stem cell therapy in chronic obstructive pulmonary disease. The Journal of international medical research, no. 3 (April 1). doi:10.1177/0300060514568733. http://www.ncbi.nlm.nih.gov/pubmed/25834280.

    Antonucci, Ivana, Andrea Pantalone, Stefano Tete, Vincenzo Salini, Cesar V Borlongan, David Hess, and Liborio Stuppia. 2012. Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Current pharmaceutical design, no. 13. http://www.ncbi.nlm.nih.gov/pubmed/22352751.

  • Scientific References – Brain Injury (Traumatic)

    Dharmasaroja, Permphan. 2008. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, no. 1 (November 18). doi:10.1016/j.jocn.2008.05.006. http://www.ncbi.nlm.nih.gov/pubmed/19017556.

    Kunkanjanawan, Tanut, Parinya Noisa, and Rangsun Parnpai. 2011. Modeling neurological disorders by human induced pluripotent stem cells. Journal of biomedicine & biotechnology (November 24). doi:10.1155/2011/350131. http://www.ncbi.nlm.nih.gov/pubmed/22162635.

    Prè, Deborah, Michael W Nestor, Andrew A Sproul, Samson Jacob, Peter Koppensteiner, Vorapin Chinchalongporn, Matthew Zimmer, Ai Yamamoto, Scott A Noggle, and Ottavio Arancio. 2014. A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PloS one, no. 7 (July 29). doi:10.1371/journal.pone.0103418. http://www.ncbi.nlm.nih.gov/pubmed/25072157. https://www.ncbi.nlm.nih.gov/pubmed/12234415 https://www.ncbi.nlm.nih.gov/pubmed/12943585 https://www.researchgate.net/publication/301782978_Stem_cells_in_traumatic_brain_injury

  • Scientific References – Brain Injury (Stroke)

    Bandasak, Ratanaporn, Kulaya Narksawat, Chanpong Tangkanakul, Yotin Chinvarun, and Sukhontha Siri. 2011. Association between hypertension and stroke among young Thai adults in Bangkok, Thailand. The Southeast Asian journal of tropical medicine and public health, no. 5. http://www.ncbi.nlm.nih.gov/pubmed/22299451.

    Dharmasaroja, Permphan. 2008. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, no. 1 (November 18). doi:10.1016/j.jocn.2008.05.006. http://www.ncbi.nlm.nih.gov/pubmed/19017556.

    Hao, Lei, Zhongmin Zou, Hong Tian, Yubo Zhang, Huchuan Zhou, and Lei Liu. 2014. Stem cell-based therapies for ischemic stroke. BioMed research international (February 26). doi:10.1155/2014/468748. http://www.ncbi.nlm.nih.gov/pubmed/24719869.

    Nilanont, Yongchai, Samart Nidhinandana, Nijasri C Suwanwela, Suchat Hanchaiphiboolkul, Taksin Pimpak, Pyatat Tatsanavivat, Gustavo Saposnik, and Niphon Poungvarin. 2013. Quality of acute ischemic stroke care in Thailand: a prospective multicenter countrywide cohort study. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, no. 2 (January 8). doi:10.1016/j.jstrokecerebrovasdis.2012.12.001. http://www.ncbi.nlm.nih.gov/pubmed/23305673.

  • Scientific References – Autism

    Arber, Charles, and Meng Li. 2013. Cortical interneurons from human pluripotent stem cells: prospects for neurological and psychiatric disease. Frontiers in cellular neuroscience (March 13). doi:10.3389/fncel.2013.00010. http://www.ncbi.nlm.nih.gov/pubmed/23493959.

    Mikhailov, Anna, Alanna Fennell, Oradawan Plong-on, Thanya Sripo, Tippawan Hansakunachai, Rawiwan Roongpraiwan, Tasnawat Sombuntham, Nichara Ruangdaraganon, John B Vincent, and Pornprot Limprasert. 2014. Screening of NLGN3 and NLGN4X genes in Thai children with autism spectrum disorder. Psychiatric genetics, no. 1. doi:10.1097/YPG.0000000000000019. http://www.ncbi.nlm.nih.gov/pubmed/24362370.

    Wisessathorn, Manika, Tanasugarn Chanuantong, and Edwin B Fisher. 2013. The impact of child’s severity on quality-of-life among parents of children with autism spectrum disorder: the mediating role of optimism. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 10. http://www.ncbi.nlm.nih.gov/pubmed/24350413.

    Yang, Pinchen, and Chen-Lin Chang. 2014. Glutamate-mediated signaling and autism spectrum disorders: emerging treatment targets. Current pharmaceutical design, no. 32. http://www.ncbi.nlm.nih.gov/pubmed/24410563.

  • Scientific References – Alzheimers

    Blurton-Jones, Mathew, Brian Spencer, Sara Michael, Nicholas A Castello, Andranik A Agazaryan, Joy L Davis, Franz-Josef Müller, Jeanne F Loring, Eliezer Masliah, and Frank M LaFerla. 2014. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem cell research & therapy, no. 2 (April 16). doi:10.1186/scrt440. http://www.ncbi.nlm.nih.gov/pubmed/25022790.

    Fitzsimons, Carlos P, Emma van Bodegraven, Marijn Schouten, Roy Lardenoije, Konstantinos Kompotis, Gunter Kenis, Mark van den Hurk, et al. 2014. Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease. Molecular neurodegeneration(June 25). doi:10.1186/1750-1326-9-25. http://www.ncbi.nlm.nih.gov/pubmed/24964731.

    Khairallah, M I, L A Kassem, N A Yassin, M A Gamal El Din, M Zekri, and M Attia. 2014. The hematopoietic growth factor “erythropoietin” enhances the therapeutic effect of mesenchymal stem cells in Alzheimer’s disease. Pakistan journal of biological sciences : PJBS, no. 1 ( 1). http://www.ncbi.nlm.nih.gov/pubmed/24783773.

    Liu, Zhonghua, Shengliang Li, Zibin Liang, Yan Zhao, Yulin Zhang, Yaqi Yang, Minjuan Wang, and Feng Li. 2013. Targeting β-secretase with RNAi in neural stem cells for Alzheimer’s disease therapy. Neural regeneration research, no. 33 ( 25). doi:10.3969/j.issn.1673-5374.2013.33.003. http://www.ncbi.nlm.nih.gov/pubmed/25206630.

  • Scientific References – ALS

    Kwon, Min-Soo, Min-Young Noh, Ki-Wook Oh, Kyung-Ah Cho, Byung-Yong Kang, Kyung-Suk Kim, Young-Seo Kim, and Seung H Kim. 2014. The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. Journal of neurochemistry, no. 2 (July 31). doi:10.1111/jnc.12814. http://www.ncbi.nlm.nih.gov/pubmed/24995608.

    Mazzini, Letizia, Angelo Vescovi, Roberto Cantello, Maurizio Gelati, and Alessandro Vercelli. 2016. Stem cells therapy for ALS. Expert opinion on biological therapy, no. 2 (January 9). doi:10.1517/14712598.2016.1116516. http://www.ncbi.nlm.nih.gov/pubmed/26558293.

    Poungvarin, N, and A Viriyavejakul. 1991. Motor neurone disease in Thailand: the clinical aspects of 77 patients. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 4. http://www.ncbi.nlm.nih.gov/pubmed/1940701.

    Thomsen, Gretchen M, Genevieve Gowing, Soshana Svendsen, and Clive N Svendsen. 2014. The past, present and future of stem cell clinical trials for ALS. Experimental neurology (March 6). doi:10.1016/j.expneurol.2014.02.021. http://www.ncbi.nlm.nih.gov/pubmed/24613827.

  • Scientific References – Ataxia

    Boonkongchuen, Pairoj, Sunsanee Pongpakdee, Panitha Jindahra, Chutima Papsing, Powpong Peerapatmongkol, Suppachok Wetchaphanphesat, Supachai Paiboonpol, et al. 2014. Clinical analysis of adult-onset spinocerebellar ataxias in Thailand. BMC neurology (April 5). doi:10.1186/1471-2377-14-75. http://www.ncbi.nlm.nih.gov/pubmed/24708620.

    Carlessi, Luigi, Elena Fusar Poli, and Domenico Delia. 2013. Brain and induced pluripotent stem cell-derived neural stem cells as an in vitro model of neurodegeneration in ataxia-telangiectasia. Experimental biology and medicine (Maywood, N.J.), no. 3. doi:10.1177/1535370213480703. http://www.ncbi.nlm.nih.gov/pubmed/23598976.

    Lolekha, Praween, and Kammant Phanthumchinda. 2009. Miller-Fisher syndrome at King Chulalongkorn Memorial Hospital. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 4. http://www.ncbi.nlm.nih.gov/pubmed/19374296.

    Sutamnartpong, Panee, Sombat Muengtaweepongsa, and Kongkiat Kulkantrakorn. 2013. Wernicke’s encephalopathy and central pontine myelinolysis in hyperemesis gravidarum. Journal of neurosciences in rural practice, no. 1. doi:10.4103/0976-3147.105608. http://www.ncbi.nlm.nih.gov/pubmed/23546346

  • Scientific References – Cerebral Palsy

    Keeratisiroj, Orawan, Nuanlaor Thawinchai, Wantana Siritaratiwat, and Montana Buntragulpoontawee. 2015. Prognostic Predictors for Ambulation in Thai Children With Cerebral Palsy Aged 2 to 18 Years. Journal of child neurology, no. 13 (April 28). doi:10.1177/0883073815582267. http://www.ncbi.nlm.nih.gov/pubmed/25922262.

    Kułak-Bejda, Agnieszka, Piotr Kułak, Grzegorz Bejda, Elżbieta Krajewska-Kułak, and Wojciech Kułak. 2016. Stem cells therapy in cerebral palsy: A systematic review. Brain & development, no. 8 (April 20). doi:10.1016/j.braindev.2016.03.002. http://www.ncbi.nlm.nih.gov/pubmed/27004672.

    Kumban, Wannisa, Sugalya Amatachaya, Alongkot Emasithi, and Wantana Siritaratiwat. 2013. Effects of task-specific training on functional ability in children with mild to moderate cerebral palsy. Developmental neurorehabilitation, no. 6 (March 11). doi:10.3109/17518423.2013.772672. http://www.ncbi.nlm.nih.gov/pubmed/23477366.

    Wang, Xiaodong, Hezhen Hu, Rongrong Hua, Jing Yang, Pei Zheng, Xinxin Niu, Hongbin Cheng, et al. 2015. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy, no. 2. doi:10.1016/j.jcyt.2014.09.010. http://www.ncbi.nlm.nih.gov/pubmed/25593078.

  • Scientific References – Fibromyalgia

    Busse, Jason W, Shanil Ebrahim, Gaelan Connell, Eric A Coomes, Paul Bruno, Keshena Malik, David Torrance, et al. 2013. Systematic review and network meta-analysis of interventions for fibromyalgia: a protocol. Systematic reviews (March 13). doi:10.1186/2046-4053-2-18. http://www.ncbi.nlm.nih.gov/pubmed/23497523.

    Gunduz, B, Y A Bayazit, F Celenk, C Saridoğan, A G Guclu, E Orcan, and J Meray. 2008. Absence of contralateral suppression of transiently evoked otoacoustic emissions in fibromyalgia syndrome. The Journal of laryngology and otology, no. 10 (March 4). doi:10.1017/S0022215107001569. http://www.ncbi.nlm.nih.gov/pubmed/18318918.

    Üçeyler, Nurcan, Daniel Zeller, Ann-Kathrin Kahn, Susanne Kewenig, Sarah Kittel-Schneider, Annina Schmid, Jordi Casanova-Molla, Karlheinz Reiners, and Claudia Sommer. 2013. Small fibre pathology in patients with fibromyalgia syndrome. Brain : a journal of neurology, no. Pt 6 (March 9). doi:10.1093/brain/awt053. http://www.ncbi.nlm.nih.gov/pubmed/23474848.

    Yeephu, Suwimon, Chuthamanee Suthisisang, Saithip Suttiruksa, Pradit Prateepavanich, Patchara Limampai, and Irwin Jon Russell. 2013. Efficacy and safety of mirtazapine in fibromyalgia syndrome patients: a randomized placebo-controlled pilot study. The Annals of pharmacotherapy, no. 7-8 (June 4). doi:10.1345/aph.1R725. http://www.ncbi.nlm.nih.gov/pubmed/23737510.

  • Scientific References – Motor Neuron Disease

    Naujock, Maximilian, Nancy Stanslowsky, Peter Reinhardt, Jared Sterneckert, Alexandra Haase, Ulrich Martin, Kwang-Soo Kim, Reinhard Dengler, Florian Wegner, and Susanne Petri. 2014. Molecular and functional analyses of motor neurons generated from human cord-blood-derived induced pluripotent stem cells. Stem cells and development, no. 24 ( 15). doi:10.1089/scd.2014.0180. http://www.ncbi.nlm.nih.gov/pubmed/25007389.

    Phanthumchinda, K, O Supcharoen, and E Mitrabukdi. 1996. Madras pattern of motor neuron disease: case report from Thailand. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 6. http://www.ncbi.nlm.nih.gov/pubmed/8855616.

    Sarlak, Golmaryam, Anorut Jenwitheesuk, Banthit Chetsawang, and Piyarat Govitrapong. 2013. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. Journal of pharmacological sciences, no. 1 (August 27). http://www.ncbi.nlm.nih.gov/pubmed/23985544.

    Terashima, Tomoya, Hideto Kojima, Hiroshi Urabe, Isamu Yamakawa, Nobuhiro Ogawa, Hiromichi Kawai, Lawrence Chan, and Hiroshi Maegawa. 2014. Stem cell factor-activated bone marrow ameliorates amyotrophic lateral sclerosis by promoting protective microglial migration. Journal of neuroscience research, no. 7. http://www.ncbi.nlm.nih.gov/pubmed/24936617.

  • Scientific References – Multiple Sclerosis

    Hou, Zong-liu, Ying Liu, Xi-Hong Mao, Chuan-yu Wei, Ming-yao Meng, Yun-hong Liu, Zara Zhuyun Yang, et al. 2013. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell adhesion & migration, no. 5 (October 30). doi:10.4161/cam.26941. http://www.ncbi.nlm.nih.gov/pubmed/24192520.

    Laosanguanek, Naressak, Thaddao Wiroteurairuang, Sasitorn Siritho, and Naraporn Prayoonwiwat. 2011. Reliability of the Thai version of SF-36 questionnaire for an evaluation of quality of life in multiple sclerosis patients in multiple sclerosis clinic at Siriraj Hospital. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. http://www.ncbi.nlm.nih.gov/pubmed/21721432.

    Pipatpajong, Hemmarin, and Kammant Phanthumchinda. 2011. Neurofibromatosis type I associated multiple sclerosis. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 4. http://www.ncbi.nlm.nih.gov/pubmed/21591539.

  • Scientific References – Spinal Muscular Atrophy

    Grunseich, Christopher, Kristen Zukosky, Ilona R Kats, Laboni Ghosh, George G Harmison, Laura C Bott, Carlo Rinaldi, et al. 2014. Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiology of disease (June 9). doi:10.1016/j.nbd.2014.05.038. http://www.ncbi.nlm.nih.gov/pubmed/24925468.

    Wang, Zhi-Bo, Xiaoqing Zhang, and Xue-Jun Li. 2012. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell research, no. 3 (December 4). doi:10.1038/cr.2012.166. http://www.ncbi.nlm.nih.gov/pubmed/23208423.

    Zanetta, Chiara, Giulietta Riboldi, Monica Nizzardo, Chiara Simone, Irene Faravelli, Nereo Bresolin, Giacomo P Comi, and Stefania Corti. 2014. Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA). Journal of cellular and molecular medicine, no. 2 (January 8). doi:10.1111/jcmm.12224. http://www.ncbi.nlm.nih.gov/pubmed/24400925.

  • Scientific References – Parkinson’s

    Neelam K. Venkataramana. Satish K.V. Kumar, Sudheer Balaraju, Radhika Chemmangattu Radhakrishnan, Abhilash Bansal, Ashish Dixit, Deepthi K. Rao, Madhulita Das, Majahar Jan, Pawan Kumar Gupta, Satish M. Totey. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease Translational Research: February 2010Volume 155, Issue 2, Pages 62–70.DOI: http://dx.doi.org/10.1016/j.trsl.2009.07.006

    Glavaski-Joksimovic, Aleksandra, and Martha C Bohn. 2013. Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Experimental neurology (March 28). doi:10.1016/j.expneurol.2013.03.016. http://www.ncbi.nlm.nih.gov/pubmed/23542820.

    Pulkes, Teeratorn, Lulin Choubtum, Sermsiri Chitphuk, Ammarin Thakkinstian, Sunsanee Pongpakdee, Kongkiat Kulkantrakorn, Suchat Hanchaiphiboolkul, Somsak Tiamkao, and Pairoj Boonkongchuen. 2014. Glucocerebrosidase mutations in Thai patients with Parkinson’s disease. Parkinsonism & related disorders, no. 9 (June 23). doi:10.1016/j.parkreldis.2014.06.007. http://www.ncbi.nlm.nih.gov/pubmed/24997549.

    Pulkes, Teeratorn, Chutima Papsing, Ammarin Thakkinstian, Sunsanee Pongpakdee, Kongkiat Kulkantrakorn, Suchat Hanchaiphiboolkul, Somsak Tiamkao, and Pairoj Boonkongchuen. 2014. Confirmation of the association between LRRK2 R1628P variant and susceptibility to Parkinson’s disease in the Thai population. Parkinsonism & related disorders, no. 9 (June 21). doi:10.1016/j.parkreldis.2014.06.013. http://www.ncbi.nlm.nih.gov/pubmed/24997548.

  • Scientific References – Spinal Cord Injuries

    Amr, Sherif M, Ashraf Gouda, Wael T Koptan, Ahmad A Galal, Dina Sabry Abdel-Fattah, Laila A Rashed, Hazem M Atta, and Mohammad T Abdel-Aziz. 2013. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. The journal of spinal cord medicine, no. 1 (November 26). doi:10.1179/2045772312Y.0000000069. http://www.ncbi.nlm.nih.gov/pubmed/24090088.

    Dajpratham, Piyapat, and Racharin Kongkasuwan. 2011. Quality of life among the traumatic spinal cord injured patients. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 10. http://www.ncbi.nlm.nih.gov/pubmed/22145512.

    Piltti, Katja M, Desiree L Salazar, Nobuko Uchida, Brian J Cummings, and Aileen J Anderson. 2013. Safety of human neural stem cell transplantation in chronic spinal cord injury. Stem cells translational medicine, no. 12 (November 4). doi:10.5966/sctm.2013-0064. http://www.ncbi.nlm.nih.gov/pubmed/24191264.

  • Scientific References – Diabetes

    1. Blurton-Jones, Mathew, Brian Spencer, Sara Michael, Nicholas A Castello, Andranik A Agazaryan, Joy L Davis, Franz-Josef Müller, Jeanne F Loring, Eliezer Masliah, and Frank M LaFerla. 2014. Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem cell research & therapy, no. 2 (April 16). doi:10.1186/scrt440. http://www.ncbi.nlm.nih.gov/pubmed/25022790.

    2. Fitzsimons, Carlos P, Emma van Bodegraven, Marijn Schouten, Roy Lardenoije, Konstantinos Kompotis, Gunter Kenis, Mark van den Hurk, et al. 2014. Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease. Molecular neurodegeneration(June 25). doi:10.1186/1750-1326-9-25. http://www.ncbi.nlm.nih.gov/pubmed/24964731.

    3. Khairallah, M I, L A Kassem, N A Yassin, M A Gamal El Din, M Zekri, and M Attia. 2014. The hematopoietic growth factor “erythropoietin” enhances the therapeutic effect of mesenchymal stem cells in Alzheimer’s disease. Pakistan journal of biological sciences : PJBS, no. 1 ( 1). http://www.ncbi.nlm.nih.gov/pubmed/24783773.

    4. Liu, Zhonghua, Shengliang Li, Zibin Liang, Yan Zhao, Yulin Zhang, Yaqi Yang, Minjuan Wang, and Feng Li. 2013. Targeting β-secretase with RNAi in neural stem cells for Alzheimer’s disease therapy. Neural regeneration research, no. 33 ( 25). doi:10.3969/j.issn.1673-5374.2013.33.003. http://www.ncbi.nlm.nih.gov/pubmed/25206630.

  • Scientific References – Erectile Dysfunction

    Lin, Ching-Shwun, Zhong-Cheng Xin, Zhong Wang, Chunhua Deng, Yun-Ching Huang, Guiting Lin, and Tom F Lue. 2011. Stem cell therapy for erectile dysfunction: a critical review. Stem cells and development, no. 3 (September 7). doi:10.1089/scd.2011.0303. http://www.ncbi.nlm.nih.gov/pubmed/21793654.

    Lojanapiwat, B, T Weerusawin, and S Kuanprasert. 2009. Erectile dysfunction as a sentinel marker of endothelial dysfunction disease. Singapore medical journal, no. 7. http://www.ncbi.nlm.nih.gov/pubmed/19644625.

    Mangir, Naside, Cem Akbal, Tufan Tarcan, Ferruh Simsek, and Levent Turkeri. 2014. Mesenchymal stem cell therapy in treatment of erectile dysfunction: autologous or allogeneic cell sources? International journal of urology : official journal of the Japanese Urological Association, no. 12 (July 30). doi:10.1111/iju.12585. http://www.ncbi.nlm.nih.gov/pubmed/25074479.

    Wu, Jian-Hong, and Shu-Jie Xia. 2011. Stem cell-based therapy for erectile dysfunction. Chinese medical journal, no. 22. http://www.ncbi.nlm.nih.gov/pubmed/22340246.

  • Scientific References – Aging & Wellness

    Jin, Hye Jin, Yun Kyung Bae, Miyeon Kim, Soon-Jae Kwon, Hong Bae Jeon, Soo Jin Choi, Seong Who Kim, Yoon Sun Yang, Wonil Oh, and Jong Wook Chang. 2013. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International journal of molecular sciences, no. 9 (September 3). doi:10.3390/ijms140917986. http://www.ncbi.nlm.nih.gov/pubmed/24005862.

    Manosroi, Aranya, Pensak Jantrawut, Toshihiro Akihisa, Worapaka Manosroi, and Jiradej Manosroi. 2011. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharmaceutical biology, no. 11. doi:10.3109/13880209.2011.576347. http://www.ncbi.nlm.nih.gov/pubmed/22014267.

    Rinaldi, S, M Maioli, G Pigliaru, A Castagna, S Santaniello, V Basoli, V Fontani, and C Ventura. 2014. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Scientific reports (September 16). doi:10.1038/srep06373. http://www.ncbi.nlm.nih.gov/pubmed/25224681.

  • Scientific References – Diabetes

    1. Kao, Der-I, and Shuibing Chen. 2012. Pluripotent stem cell-derived pancreatic β-cells: potential for regenerative medicine in diabetes. Regenerative medicine, no. 4. doi:10.2217/rme.12.27. http://www.ncbi.nlm.nih.gov/pubmed/22817630.

    2. Sacks, Frank M, Michel P Hermans, Paola Fioretto, Paul Valensi, Timothy Davis, Edward Horton, Christoph Wanner, et al. 2013. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation, no. 9 (December 18). doi:10.1161/CIRCULATIONAHA.113.002529. http://www.ncbi.nlm.nih.gov/pubmed/24352521.

    3. Sukpat, Supakanda, Nipan Isarasena, Jutamas Wongphoom, and Suthiluk Patumraj. 2013. Vasculoprotective effects of combined endothelial progenitor cells and mesenchymal stem cells in diabetic wound care: their potential role in decreasing wound-oxidative stress. BioMed research international (June 17). doi:10.1155/2013/459196. http://www.ncbi.nlm.nih.gov/pubmed/23844362.

    4. Zhao, Yong, Zhaoshun Jiang, Tingbao Zhao, Mingliang Ye, Chengjin Hu, Huimin Zhou, Zhaohui Yin, et al. 2013. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC medicine (July 9). doi:10.1186/1741-7015-11-160. http://www.ncbi.nlm.nih.gov/pubmed/23837842.

    5. Lu D1, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011 Apr;92(1):26-36. doi: 10.1016/j.diabres.2010.12.010. Epub 2011 Jan 8.

    6. Paolo Fiorina, Mollie Jurewicz, Andrea Augello, Andrea Vergani, Shirine Dada, Stefano La Rosa, Martin Selig, Jonathan Godwin, Kenneth Law, Claudia Placidi, R. Neal Smith, Carlo Capella, Scott Rodig, Chaker N. Adra, Mark Atkinson, Mohamed H. Sayegh and Reza Abdi Immunomodulatory Function of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Autoimmune Type 1 Diabetes. J Immunol July 15, 2009, 183 (2) 993-1004; DOI: https://doi.org/10.4049/jimmunol.0900803

    7. Yunchuan Ding, Danmei Xu, Gang Feng, Andrew Bushell, Ruth J. Muschel, Kathryn J. Wood. Mesenchymal Stem Cells Prevent the Rejection of Fully Allogenic Islet Grafts by the Immunosuppressive Activity of Matrix Metalloproteinase-2 and -9. Diabetes 2009 Aug; 58(8): 1797-1806. https://doi.org/10.2337/db09-0317

    8. Dora M. Berman, Melissa A. Willman, Dongmei Han, Gary Kleiner, Norman M. Kenyon, Over Cabrera, Julie A. Karl, Roger W. Wiseman, David H. O'Connor, Amelia M. Bartholomew, Norma S. Kenyon. Mesenchymal Stem Cells Enhance Allogeneic Islet Engraftment in Nonhuman Primates. Diabetes 2010 Oct; 59(10): 2558-2568. https://doi.org/10.2337/db10-0136

  • Scientific References – Immune System Modulation

    1. Ennis J1, Götherström C, Le Blanc K, Davies JE. In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy. 2008;10(2):174-81. doi: 10.1080/14653240801891667

    2. Stubbendorff M1, Deuse T, Hua X, Phan TT, Bieback K, Atkinson K, Eiermann TH, Velden J, Schröder C, Reichenspurner H, Robbins RC, Volk HD, Schrepfer S. Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev. 2013 Oct 1;22(19):2619-29. doi: 10.1089/scd.2013.0043. Epub 2013 Jun 29.

    3. Wang D1, Chen K, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Bayard F, Zhu D, Han ZC. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells.  Exp Cell Res. 2010 Sep 10;316(15):2414-23. doi: 10.1016/j.yexcr.2010.04.018. Epub 2010 Apr 24.

    4. Akle C, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–1005.

    5. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19(3):348–352.

    6. King AE, Paltoo A, Kelly RW, et al. Expression of natural antimicrobials by human placenta and fetal membranes.Placenta. 2007;28(2–3):161–169.

    7. Talmi, Y, Sigler, L, Inge, E, Finkelstein Y, Zohar Y. Antibacterial Properties of Human Amniotic Membranes.Placenta. 1991;12(3):285–288.

    8. Christopher J. Centeno, John R. Schultz, Michelle Cheever, Brent Robinson, Michael Freeman, Wayne Marasco. Safety and Complications Reporting on the Re-implantation of Culture-Expanded Mesenchymal Stem Cells using Autologous Platelet Lysate Technique. Current Stem Cell Research & Therapy Volume 12, 8 Issues, 2017

    9. Morgan T. Sutton,1,2 David Fletcher,1 Santosh K. Ghosh,3 Aaron Weinberg,3 Rolf van Heeckeren,1 Sukhmani Kaur,1 Zhina Sadeghi,4 Adonis Hijaz,4 Jane Reese,2,5,6 Hillard M. Lazarus,2,5,6 Donald P. Lennon,2,7,8 Arnold I. Caplan,2,7,8 and Tracey L. Bonfield1,2 Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment. Stem Cells International Volume 2016 (2016), Article ID 5303048, 12 pages http://dx.doi.org/10.1155/2016/5303048

    10. Le Blanc K, Ringden O. (2007). Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med.262(5):509-525.

    11. Aggarwal S, Pittenger MF. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 105 (4):1815-1822.

    12. Amorin B, et al. (2014). Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Human Cell. 27:137-150.

    13. Riordan N, et at. (2007). Cord blood in regenerative medicine: do we need immune suppression? J Trans Med 2007, 5:8.

    14. Sánchez-Berná, Isabel, Carlos Santiago-Díaz, and Juan Jiménez-Alonso. 2014. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases]. Medicina clinica, no. 2 (March 15). doi:10.1016/j.medcli.2014.01.014. http://www.ncbi.nlm.nih.gov/pubmed/24636281.

  • Scientific References – Liver Disease / Cirrhosis

    Allameh, Abdolamir, and Somaieh Kazemnejad. 2012. Safety evaluation of stem cells used for clinical cell therapy in chronic liver diseases; with emphasize on biochemical markers. Clinical biochemistry, no. 6 (January 27). doi:10.1016/j.clinbiochem.2012.01.017. http://www.ncbi.nlm.nih.gov/pubmed/22306885.

    Esrefoglu, Mukaddes. 2013. Role of stem cells in repair of liver injury: experimental and clinical benefit of transferred stem cells on liver failure. World journal of gastroenterology, no. 40 ( 28). doi:10.3748/wjg.v19.i40.6757. http://www.ncbi.nlm.nih.gov/pubmed/24187451.

    Shi, Ming, Zheng Zhang, Ruonan Xu, Hu Lin, Junliang Fu, Zhengsheng Zou, Aimin Zhang, et al. 2012. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem cells translational medicine, no. 10 (October 11). doi:10.5966/sctm.2012-0034. http://www.ncbi.nlm.nih.gov/pubmed/23197664.

    Zimmermann, Joshua A, and Todd C McDevitt. 2013. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy, no. 3 (November 9). doi:10.1016/j.jcyt.2013.09.004. http://www.ncbi.nlm.nih.gov/pubmed/24219905.

  • Scientific References - Lupus

    1. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014 Mar 25;16(2):R79. doi: 10.1186/ar4520.

    2. Wang D1, Zhang H, Liang J, Li X, Feng X, Wang H, Hua B, Liu B, Lu L, Gilkeson GS, Silver RM, Chen W, Shi S, Sun L. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22(12):2267-77. doi: 10.3727/096368911X582769.

    3. Carrion F1, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, Mönckeberg G, Figueroa FE. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 2010 Mar;19(3):317-22. doi: 10.1177/0961203309348983. Epub 2009 Nov 17.

    4. Akawatcharangura, P, N Taechakraichana, and M Osiri. 2015. Prevalence of premature ovarian failure in systemic lupus erythematosus patients treated with immunosuppressive agents in Thailand. Lupus, no. 4 (November 29). doi:10.1177/0961203315617539. http://www.ncbi.nlm.nih.gov/pubmed/26621134.

    5. Liang, Jun, and Lingyun Sun. 2015. Mesenchymal stem cells transplantation for systemic lupus erythematosus. International journal of rheumatic diseases, no. 2 (January 22). doi:10.1111/1756-185X.12531. http://www.ncbi.nlm.nih.gov/pubmed/25611801.

    6. Mohara, Adun, Román Pérez Velasco, Naiyana Praditsitthikorn, Yingyos Avihingsanon, and Yot Teerawattananon. 2013. A cost-utility analysis of alternative drug regimens for newly diagnosed severe lupus nephritis patients in Thailand. Rheumatology (Oxford, England), no. 1 (October 4). doi:10.1093/rheumatology/ket304. http://www.ncbi.nlm.nih.gov/pubmed/24097289.

    7. Siripaitoon, B, S Lertwises, P Uea-Areewongsa, and B Khwannimit. 2014. A study of Thai patients with systemic lupus erythematosus in the medical intensive care unit: epidemiology and predictors of mortality. Lupus, no. 1 (August 22). doi:10.1177/0961203314548884. http://www.ncbi.nlm.nih.gov/pubmed/25149601.

    8. Wang, Q, S Qian, J Li, N Che, L Gu, Q Wang, Y Liu, and H Mei. 2015. Combined transplantation of autologous hematopoietic stem cells and allogenic mesenchymal stem cells increases T regulatory cells in systemic lupus erythematosus with refractory lupus nephritis and leukopenia. Lupus, no. 11 (April 24). doi:10.1177/0961203315583541. http://www.ncbi.nlm.nih.gov/pubmed/25914407.

  • Scientific References - Burns

    1. Kim JS, Kim JC, Na BK, Jeong JM, Song CY. Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res. 2000;70(3):329–337.

    2. Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179(3):325–335.

    3. Mermet I, Pottier N, Sainthillier JM, et al. Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen. 2007;15(4):459–464.

    4. Adly OA, Moghazy AM, Abbas AH, et al. Assessment of amniotic and polyurethane membrane dressings in the treatment of burns. Burns. 2010;36(5):703–710.

    5. Lorusso R, Geraci, L, Masellis, M. The treatment of superficial burns with biological and synthetic material: frozen amnion and biobrane. Annals of the MBC. 1989;2(2):79–84.

    6. Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

  • Scientific References – Heart Disease (Congestive Heart Failure, Ischemic Heart Disease, Myocardial Infarction / Heart Attack)

    • Charles A. Goldthwaite, Jr., Ph.D. Mending a Broken Heart: Stem Cells and Cardiac Repair. https://stemcells.nih.gov/info/Regenerative_Medicine/2006Chapter6.htm

    • Hare JM1, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012 Dec 12;308(22):2369-79.

    • Boonbaichaiyapruck, Sarana, Pavit Pienvichit, Thosapol Limpijarnkij, Pairoj Rerkpattanapipat, Apichai Pongpatananurak, Ratchanee Saelee, Artit Ungkanont, and Suradej Hongeng. 2010. Transcoronary infusion of bone marrow derived multipotent stem cells to preserve left ventricular geometry and function after myocardial infarction. Clinical cardiology, no. 7. doi:10.1002/clc.20545. http://www.ncbi.nlm.nih.gov/pubmed/20552656.

    • Hou, Jingying, Lingyun Wang, Jieyu Jiang, Changqing Zhou, Tianzhu Guo, Shaoxin Zheng, and Tong Wang. 2013. Cardiac stem cells and their roles in myocardial infarction. Stem cell reviews, no. 3. doi:10.1007/s12015-012-9421-4. http://www.ncbi.nlm.nih.gov/pubmed/23238707.

    • Nartprayut, Kuneerat, Yaowalak U-Pratya, Pakpoom Kheolamai, Sirikul Manochantr, Methichit Chayosumrit, Surapol Issaragrisil, and Aungkura Supokawej. 2013. Cardiomyocyte differentiation of perinatallyderived mesenchymal stem cells. Molecular medicine reports, no. 5 (March 4). doi:10.3892/mmr.2013.1356. http://www.ncbi.nlm.nih.gov/pubmed/23467912.

    • Pratumvinit, Busadee, Kanit Reesukumal, Kajohnkiart Janebodin, Nicholas Ieronimakis, and Morayma Reyes. 2013. Isolation, characterization, and transplantation of cardiac endothelial cells. BioMed research international (October 27). doi:10.1155/2013/359412. http://www.ncbi.nlm.nih.gov/pubmed/24282814.

    • Sheng, Calvin C, Li Zhou, and Jijun Hao. 2012. Current stem cell delivery methods for myocardial repair. BioMed research international (December 27). doi:10.1155/2013/547902. http://www.ncbi.nlm.nih.gov/pubmed/23509740.

    • Arom, Kitipan V, Permyos Ruengsakulrach, and Vibul Jotisakulratana. 2008. Intramyocardial angiogenic cell precursor injection for cardiomyopathy. Asian cardiovascular & thoracic annals, no. 2. http://www.ncbi.nlm.nih.gov/pubmed/18381874.

    • Varga, E, C Nemes, R P Davis, O Ujhelly, N Klincumhom, Z Polgar, S Muenthaisong, M K Pirity, and A Dinnyes. 2014. Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system. Experimental cell research, no. 2 (February 18). doi:10.1016/j.yexcr.2014.02.006. http://www.ncbi.nlm.nih.gov/pubmed/24560743.

    • Windmolders, Severina, Astrid De Boeck, Remco Koninckx, Annick Daniëls, Olivier De Wever, Marc Bracke, Marc Hendrikx, Karen Hensen, and Jean-Luc Rummens. 2013. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident Cardiac Atrial appendage Stem Cells. Journal of molecular and cellular cardiology (December 8). doi:10.1016/j.yjmcc.2013.11.016. http://www.ncbi.nlm.nih.gov/pubmed/24326234.

    • Carvalho, Edmund, Paul Verma, Kerry Hourigan, and Rinti Banerjee. 2015. Myocardial infarction: stem cell transplantation for cardiac regeneration. Regenerative medicine, no. 8 (November 13). doi:10.2217/rme.15.63. http://www.ncbi.nlm.nih.gov/pubmed/26563414.

    • Limsuwan, Alisa, Pavit Pienvichit, Thosaphol Limpijankit, Pongsak Khowsathit, Suradej Hongeng, Ratanaporn Pornkul, Suvipaporn Siripornpitak, and Sarana Boonbaichaiyapruk. 2010. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience. Clinical cardiology, no. 8. doi:10.1002/clc.20463. http://www.ncbi.nlm.nih.gov/pubmed/20632394.

    • Srimahachota, Suphot, Smonporn Boonyaratavej, Pairoj Rerkpattanapipat, Somjai Wangsupachart, Monravee Tumkosit, Udomsak Bunworasate, Thayapong Na Nakorn, et al. 2011. Intra-coronary bone marrow mononuclear cell transplantation in patients with ST-elevation myocardial infarction: a randomized controlled study. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, no. 6. http://www.ncbi.nlm.nih.gov/pubmed/21696072.

  • Scientific References – Irritable Bowel Disease (Ulcerative Colitis, Crohn’s)

    • Lazebnik LB, Kniazev OV, Konopliannikov AG, Parfenov AI, Ruchkina IN, Mikhaĭlova ZF, Tsaregorodtseva TM, Khomeriki SG, Rogozina VA, Gudkova RB, Shcherbakov PL, Konopliannikova OA. [Allogeneic mesenchymal stromal cells in patients with ulcerative colitis: two years of observation]. Eksp Klin Gastroenterol. 2010;(11):3-15. (72% of 34 pts had some benefit at 2 yrs w/ just 1 tx of own bone marrow.)

    • EmCell: Ulcerative Colitis. Crohn’s Disease. https://www.emcell.com/en/list_of_diseases/ulcerative-colitis.htm

    • Martínez-Montiel Mdel P1, Gómez-Gómez GJ1, Flores AI1. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol. 2014 Feb 7;20(5):1211-27. doi: 10.3748/wjg.v20.i5.1211.

    • Amy L Lightner. Stem Cell Therapy for Inflammatory Bowel Disease. Citation: Clinical and Translational Gastroenterology (2017) 8, e82; doi:10.1038/ctg.2017.7 Published online 16 March 2017

    • Khalil PN1, Weiler V, Nelson PJ, Khalil MN, Moosmann S, Mutschler WE, Siebeck M, Huss R. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology. 2007 Mar;132(3):944-54. Epub 2006 Dec

    • González MA1, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009 Mar;136(3):978-89. doi: 10.1053/j.gastro.2008.11.041. Epub 2008 Nov 27.

    • Blanc, K Le, L Tammik, B Sundberg, S E Haynesworth, and O Ringdén. 2003. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian journal of immunology, no. 1. http://www.ncbi.nlm.nih.gov/pubmed/12542793.

    • Ciccocioppo, Rachele, Alessandra Gallia, Adele Sgarella, Peter Kruzliak, Paolo G Gobbi, and Gino Roberto Corazza. 2015. Long-Term Follow-Up of Crohn Disease Fistulas After Local Injections of Bone Marrow-Derived Mesenchymal Stem Cells. Mayo Clinic proceedings, no. 6. doi:10.1016/j.mayocp.2015.03.023. http://www.ncbi.nlm.nih.gov/pubmed/26046409.

    • Portilla, F de la, F Alba, D García-Olmo, J M Herrerías, F X González, and A Galindo. 2012. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. International journal of colorectal disease, no. 3 (September 29). doi:10.1007/s00384-012-1581-9. http://www.ncbi.nlm.nih.gov/pubmed/23053677.

    • Sánchez-Berná, Isabel, Carlos Santiago-Díaz, and Juan Jiménez-Alonso. 2014. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases]. Medicina clinica, no. 2 (March 15). doi:10.1016/j.medcli.2014.01.014. http://www.ncbi.nlm.nih.gov/pubmed/24636281.

  • Scientific References – Kidney / Renal Disease

    • Sumboonnanonda, Achra, Kleebsabai Sanpakit, and Nuntawan Piyaphanee. 2008. Renal tubule function in beta-thalassemia after hematopoietic stem cell transplantation. Pediatric nephrology (Berlin, Germany), no. 1 (August 8). doi:10.1007/s00467-008-0949-0. http://www.ncbi.nlm.nih.gov/pubmed/18688653.

    • Tangnararatchakit, Kanchana, Wiwat Tirapanich, Usanarat Anurathapan, Wiwat Tapaneya-Olarn, Samart Pakakasama, Saengsuree Jootar, Shimon Slavin, and Suradej Hongeng. 2012. Depletion of alloreactive T cells for tolerance induction in a recipient of kidney and hematopoietic stem cell transplantations. Pediatric transplantation, no. 8 (May 4). doi:10.1111/j.1399-3046.2012.01701.x. http://www.ncbi.nlm.nih.gov/pubmed/22553996.

    • Tögel, Florian, Arthur Cohen, Ping Zhang, Ying Yang, Zhuma Hu, and Christof Westenfelder. 2009. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. Stem cells and development, no. 3. doi:10.1089/scd.2008.0092. http://www.ncbi.nlm.nih.gov/pubmed/18564903.

    • Townamchai, N, K Praditpornsilpa, and S Eiam-Ong. 2010. Endothelial progenitor cells in Asian kidney transplant patients. Transplantation proceedings, no. 5. doi:10.1016/j.transproceed.2010.01.063. http://www.ncbi.nlm.nih.gov/pubmed/20620502.

  • Scientific References - Additional

    1. Imran Ullah,* Raghavendra Baregundi Subbarao,* and Gyu Jin Rho. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015; 35(2): e00191. Published online 2015 Apr 28. Prepublished online 2015 Mar 23. doi:  10.1042/BSR20150025

    2. Mesenchymal Stem Cells: Environmentally responsive therapeutics for regenerative Medicine. PDF article: https://www.apexbiologix.com/PDFs/journal.pdf

    3. Priya R Baraniak1 and Todd C McDevitt. Stem cell paracrine actions and tissue regeneration. Regen Med. Author manuscript; available in PMC 2010 Nov 1. Published in final edited form as: Regen Med. 2010 Jan; 5(1): 121–143. doi:  10.2217/rme.09.74

    4. Tokiko Nagamura-Inoue and Haiping He. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells. 2014 Apr 26; 6(2): 195–202. Published online 2014 Apr 26. doi:  10.4252/wjsc.v6.i2.195

    5. Ann De Becker and Ivan Van Riet. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 2016 Mar 26; 8(3): 73–87. Published online 2016 Mar 26. doi:  10.4252/wjsc.v8.i3.73

    6. Hye Jin Jin 1,2,†, Yun Kyung Bae 1,†, Miyeon Kim 1, Soon-Jae Kwon 1, Hong Bae Jeon 1, Soo Jin Choi 1, Seong Who Kim 2, Yoon Sun Yang 1, Wonil Oh 1 and Jong Wook Chang 1, Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy. Int. J. Mol. Sci. 2013, 14(9), 17986-18001; doi:10.3390/ijms140917986

    7. Journal of Perinatology(2005) 25, 341–348. doi:10.1038/sj.jp.7211290

    8. Johnson HL. Observation on the prevention of post operative peritonitis and abdominal adhesions. Surg Gynac Obstet. 1927;XLV:612

    9. Kerry Rennie, Andrée Gruslin, Markus Hengstschläger, et al., “Applications of Amniotic Membrane and Fluid in Stem Cell Biology and Regenerative Medicine,” Stem Cells International, vol. 2012, Article ID 721538, 13 pages, 2012

    10. Y. Kim, T. Kim, W.Y. Kang, B. Hyun, H.Y. Cheon and D. Kim, Korean Chem. Eng. Res., 48, 327 (2010)Y. Ozqenel, B. Samil and M. Ozcan, J. Hand Surgery, 26, 332 (2001).

    11. Stem Cells Australia research for umbilical cord stem cells

    12. R&D Systems research on Mesenchymal Stem Cells

    13. Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study.

    14. Tokiko Nagamura-Inoue and Haiping He Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells. 2014 Apr 26; 6(2): 195–202. Published online 2014 Apr 26. doi:  10.4252/wjsc.v6.i2.195

    15. Perico N1, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA, Capelli C, Rambaldi A, Cassis P, Rizzo P, Cortinovis M, Noris M, Remuzzi G. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int. 2013 Sep;26(9):867-78. doi: 10.1111/tri.12132. Epub 2013 Jun 6.

    16. François S1, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A, Frick J, Saché A, Bouchet S, Thierry D, Gourmelon P, Gorin NC, Chapel A. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells. 2006 Apr;24(4):1020-9. Epub 2005 Dec 8.

    17. Gonzalez R, Woynarowski D, Geffner N. (2015). Stem Cells Targeting Inflammation as Potential Anti-aging Strategies and Therapies. Cell & Tissue Transplantation & Therapy 7 1–8.

    18. Guillot P.V., O’Donoghue K., Kurata H., Fisk N.M. (2006). Fetal stem cells: Betwixt and between, Semin. Reprod. Med. 24 (5) 340–347.

    19.  Prockop D. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 82(3):241-3.

    20. Caplan AI. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 213(2):341-7.

    21. Burdon TJ, et al. (2011). Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential. Bone Marrow Res. 2011:207326.

    22. Murphy MB, Moncivais K, Caplan A. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 45:e54.

    23. Dominici M, et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8:315-317.

    24. Lennartsson J, Rönnstrand L. (2012). Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev. 92(4):1619-49.

Stem cells and cell based therapies have shown tremendous promise; yet controlled studies are still needed in order to confirm its efficacy. Professional judgment and expertise is needed in using these therapies for any therapeutic use, and we urge anyone embarking on the use of stem cell therapies or any regenerative medicine product to consult the national health data bases to evaluate current information from clinical trials.  The FDA websites on human tissue should also be consulted to get its current evaluation of any regenerative therapy.  Stem cells, like other medical products that are intended to treat, cure or prevent disease, generally require FDA approval before they can be marketed. FDA has not approved any stem cell-based or regenerative medicine products for use, other than cord blood-derived hematopoietic progenitor cells (blood forming stem cells) for certain indications.     http://www.fda.gov/AboutFDA/Transparency/ Basics/ucm194655.htm